Indian Statistical Institute Bangalore Centre Mid-semster Examination Topology, B. Math II Year II Semester, 2103-14

Time limit is 3hours.

All spaces are assumed to be T_1 .

Maximum marks: 100.

1. Consider \mathbb{R} with the cofinite topology. Which of the following sequences are convergent and what are their limits?

a)
$$\{1, 2, 3, ...\}$$

b)
$$\{1, 1, 2, 1, 3, 1, 4, 1, ...\}$$
 $(a_n = n \text{ for } n \text{ odd}, 1 \text{ for } n \text{ even})$

c)
$$\{1, 2, 1, 2, 1, 2, ...\}$$
 $(a_n = 1 \text{ for } n \text{ odd}, 2 \text{ for } n \text{ even})$ $[5+5+5]$

2. Prove that any second countable space is first countable. Is the converse true? Justify. [10+15]

3. Show that \mathbb{R} with the co-finite topology is not regular. Prove also that \mathbb{R} with the co-countable topology is not regular. [5]

4. If x and y are distinct points of a regular space (X, τ) show that there exist open sets U and V such that $x \in U, y \in V$ and $\overline{U} \cap \overline{V} = \emptyset$. [15]

5. Prove that any open connected set in C[0,1] is polygonally connected.

[Here C[0, 1] is the space of real valued continuous function on [0, 1] with the metric: $d(f, g) = \sup\{|f(x) - g(x)| : 0 \le x \le 1\}$; a polygonal path is a path made up of a finite number of line segments]. [20]

6. Let A be a subgroup of \mathbb{R} under addition. Show that either A is dense in \mathbb{R} or else the subspace topology of A is the discrete topology.

Hint: consider $\inf\{a > 0 : a \in A\}$. [20]